Four different sets of objects contain 2,5,6 and 7 objects respectively how many unique combinations can be formed by picking one object from each set

Respuesta :

Answer:

420 unique combinations.

Step-by-step explanation:

Fundamental counting principle:

States that if there are p ways to do a thing, and q ways to do another thing, and these two things are independent, there are p*q ways to do both things.

One object from each set:

2 from one set, 5, 6 and 7 by others. Sets are independent, so, by the fundamental counting principle:

2*5*6*7 = 10*42 = 420

420 unique combinations.

ACCESS MORE