Answer:
The triangle's perimeter is 61.77 inches.
Step-by-step explanation:
Since an altitude is drawn from the vertex of an isosceles triangle, forming a right angle and two congruent triangles, and as a result, the altitude cuts the base into two equal segments, and the length of the altitude is 26 inches, and the length of the base is 9 inches, to find the triangle's perimeter the following calculation must be performed:
Isosceles triangle = 2 equal sides
To obtain the value of the sides, the Pythagorean theorem must be applied on the right triangle formed with the altitude.
(9/2) ^ 2 + 26 ^ 2 = X ^ 2
4.5 ^ 2 + 26 ^ 2 = X ^ 2
20.25 + 676 = X ^ 2
√ (20.25 + 676) = X
√696.25 = X
26.38 = X
26.3865 x 2 + 9 = X
52.77 + 9 = X
61.77 = X
Therefore, the triangle's perimeter is 61.77 inches.