I need to match them but I don't know how
![I need to match them but I dont know how class=](https://us-static.z-dn.net/files/dcf/d38c612b30cc1fa185490dbcdfa5364c.jpeg)
Given:
The system of equations is:
[tex]x+3y=5[/tex]
[tex]x-3y=-1[/tex]
The given matrices are [tex]\left[\begin{array}{cc}5&3\\-1&-3\end{array}\right] [/tex], [tex]\left[\begin{array}{cc}1&5\\1&-1\end{array}\right][/tex], [tex]\left[\begin{array}{cc}1&3\\1&-3\end{array}\right][/tex].
To find:
The correct names for the given matrices.
Solution:
We have,
[tex]x+3y=5[/tex]
[tex]x-3y=-1[/tex]
Here, coefficients of x are 1 and 1 respectively, the coefficients of y are 3 and -3 respectively and constant terms are 5 and -1 respectively.
In the x-determinant, the coefficients of x are in the first column and the constant terms are in the second column. So, the x-determinant is:
[tex]\left[\begin{array}{cc}1&5\\1&-1\end{array}\right][/tex]
In the y-determinant, the constant terms are in the first column and the coefficients of y are in the second column. So, the y-determinant is:
[tex]\left[\begin{array}{cc}5&3\\-1&-3\end{array}\right] [/tex]
In the system determinant, the coefficients of x are in the first column and the coefficients of y are in the second column. So, the system determinant is:
[tex]\left[\begin{array}{cc}1&3\\1&-3\end{array}\right][/tex]
Therefore, the first matrix is y-determinant, second matrix is x-determinant and the third matrix is the system determinant.