The diameter of the dot produced by a printer is normally distributed with a mean diameter of 0.002 inch and a standard deviation of 0.0004 inch. What is the probability that a diameter is between 0.0014 and 0.0026 inches

Respuesta :

Answer:

[tex]P(0.0014 < x < 0.0026) = 0.86639[/tex]

Step-by-step explanation:

Given

[tex]\mu = 0.002[/tex]

[tex]\sigma = 0.0004[/tex]

Required

[tex]P(0.0014 < x < 0.0026)[/tex]

First, calculate the z score

[tex]z = \frac{x - \mu}{\sigma}[/tex]

For x = 0.0014

[tex]z = \frac{0.0014 - 0.002}{0.0004}[/tex]

[tex]z = \frac{-0.0006}{0.0004}[/tex]

[tex]z = -1.5[/tex]

For x = 0.0026

[tex]z = \frac{0.0026 - 0.002}{0.0004}[/tex]

[tex]z = \frac{0.0006}{0.0004}[/tex]

[tex]z = 1.5[/tex]

So, we have:

[tex]P(0.0014 < x < 0.0026) = P(-1.5<z<1.5)[/tex]

From z probability table, we have:

[tex]P(-1.5<z<1.5) = 0.86639[/tex]

Hence:

[tex]P(0.0014 < x < 0.0026) = 0.86639[/tex]

ACCESS MORE