Answer:
D. Axis of symmetry: x = –0.5; Vertex: (–0.5, 0.75); f(x) = x2 + 2x + 1
Step-by-step explanation:
A. Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Down
Vertex:
(
1
/2
,
1
/4
)
Focus:
(
1
/2
,
0
)
Axis of Symmetry:
x
=
1
2
Directrix:
y
=
1
2
x
y
−
2
−
6
−
1
−
2
1
2
1
4
1
0
2
−
2
B. Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Up
Vertex:
(
−
1
/2
,
3
/4
)
Focus:
(
−
1
/2
,
1
)
Axis of Symmetry:
x
=
−
1
2
Directrix:
y
=
1
2
x
y
−
2
3
−
1
1
−
1
2
3
4
1
3
2
7
C. Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Up
Vertex:
(
1
/2
,
3
/4
)
Focus:
(
1
/2
,
1
)
Axis of Symmetry:
x
=
1
2
Directrix:
y
=
1
2
x
y
−
2
7
−
1
3
1
2
3
4
1
1
2
3
D. Graph the parabola using the direction, vertex, focus, and axis of symmetry.
Direction: Opens Up
Vertex:
(
−
1
,
0
)
Focus:
(
−
1
,
1
/4
)
Axis of Symmetry:
x
=
−
1
Directrix:
y
=
−
1
4
x
y
−
3
4
−
2
1
−
1
0
0
1
1
4