Answer:
[tex]f = \frac{720}{11}[/tex]
Step-by-step explanation:
Given
[tex]f\ \alpha\ \frac{\sqrt T}{L}[/tex] --- The variation
[tex]f = 60; T = 121; L = 12[/tex]
Required
Find f, when T =81; L = 9
We have:
[tex]f\ \alpha\ \frac{\sqrt T}{L}[/tex]
Express as equation
[tex]f = k\frac{\sqrt T}{L}[/tex]
Make k the subject
[tex]k = \frac{fL}{\sqrt T}[/tex]
When [tex]f = 60; T = 121; L = 12[/tex]
[tex]k = \frac{60 * 12}{\sqrt {121}}[/tex]
[tex]k = \frac{60 * 12}{11}[/tex]
[tex]k = \frac{720}{11}[/tex]
To solve for f, when T =81; L = 9
We have:
[tex]f = k\frac{\sqrt T}{L}[/tex]
[tex]f = \frac{720}{11} * \frac{\sqrt{81}}{9}[/tex]
[tex]f = \frac{720}{11} * \frac{9}{9}[/tex]
[tex]f = \frac{720}{11} * 1[/tex]
[tex]f = \frac{720}{11}[/tex]