Answer:
[tex]a. y = 12\times \frac{1}{x^2} \\b. x = 2 , when \ y =3[/tex]
Step-by-step explanation:
[tex]y \ is\ inversely \ proportional \ to \ square \ of \ x \ means , y \ \alpha \ \frac{1}{x^2}[/tex]
[tex]Therefore, y = k \times \frac{1}{x^2}[/tex]
Given y = 48, x = 1/2. We will find k.
[tex]y = k \times \frac{1}{x^2}\\\\48 = k \times \frac{1}{\frac{1}{4}}}\\\\k = 48 \times \frac{1}{4} =12[/tex]
Find x.
[tex]y = k \times \frac{1}{x^2} \\\\3 = 12 \times \frac{1}{x^2}\\\\\frac{3}{12} = \frac{1}{x^2}\\\\x^2 = \frac{12}{3}\\\\x^2 = 4 \\\\x = 2[/tex]