Respuesta :

Answer:

θ = 0° , 60°

Step-by-step explanation:

[tex]\cos^2\theta + \sqrt{3}\sin \theta \cos \theta = 1[/tex]

  • Substract both the sides from 1.

[tex]=> \cos^2\theta + \sqrt{3}\sin \theta \cos \theta - 1 = 1 - 1[/tex]

[tex]=> \cos^2\theta + \sqrt{3}\sin \theta \cos \theta - 1 = 0[/tex]

  • Rearrange the terms in L.H.S.

[tex]=> (\cos^2 \theta - 1 )+ \sqrt{3} \sin \theta \cos \theta = 0[/tex]

  • Replace the terms in brackets with '-sin²θ' by using the identity (sin²θ + cos²θ = 1).

[tex]=> -\sin^2 \theta + \sqrt{3} \sin \theta \cos \theta = 0[/tex]

  • Take 'sinθ' common from the whole expression in L.H.S.

[tex]=> \sin \theta(- \sin \theta + \sqrt{3}\cos \theta) = 0[/tex]

Now solve each part separately :-

1) [tex]\sin \theta = 0[/tex]

[tex]=> \theta = \sin^{-1}0 = 0[/tex]

2) [tex]-\sin \theta + \sqrt{3} \cos \theta = 0[/tex]

  • Divide both the sides by 'cosθ'.

[tex]=> \frac{-\sin \theta + \sqrt{3}\cos \theta }{\cos \theta} = \frac{0}{\cos \theta}[/tex]

[tex]=> \frac{-sin \theta}{\cos \theta} + \frac{\sqrt{3} \cos \theta}{\cos \theta} = 0[/tex]

[tex]=> -\tan \theta + \sqrt{3} = 0[/tex]

  • Add both the sides with 'tanθ'.

[tex]=> -\tan \theta + \sqrt{3} + \tan \theta = 0 + \tan \theta[/tex]

[tex]=> \tan \theta = \sqrt{3}[/tex]

[tex]=> \theta = \tan^{-1}\sqrt{3} = 60[/tex]

∴ θ = 0° , 60°

msm555

Answer:

Solution given:

[tex] \large{ {cos}^{2} \theta + \sqrt{3} sin \theta cos \theta = 1}[/tex]

[tex] 1-sin^{2} \theta+\sqrt{3} sin \theta cos \theta = 1[/tex]

[tex] 1-1 +sin^{2}\theta=\sqrt{3} sin \theta cos \theta = 1[/tex]

[tex] Sin\theta(sin\theta -\sqrt{3}cos\theta)[/tex]

Either

[tex] sin\theta=\sqrt{3} cos \theta [/tex]

[tex] \sqrt{sin\theta}{cos \theta}=\sqrt{3} [/tex]

[tex] Tan \theta =\sqrt{3}[/tex]

[tex] Tan \theta =Tan 60,Tan(180+60),Tan (360+60)[/tex]

[tex] \theta =60°,240°,420°[/tex]

in terms of π is

[tex] \theta =⅓π,\frac{4}{3}π,[/tex]

Or

[tex] Sin\theta=1[/tex]

[tex]Sin\theta=Sin0° ,Sin180°[/tex]

In terms of π is

[tex]\theta=0π,π[/tex]

so

[tex]\theta=0π,⅓π,π,\frac{4}{3}π,[/tex]

RELAXING NOICE
Relax