Respuesta :
Answer:
θ = 0° , 60°
Step-by-step explanation:
[tex]\cos^2\theta + \sqrt{3}\sin \theta \cos \theta = 1[/tex]
- Substract both the sides from 1.
[tex]=> \cos^2\theta + \sqrt{3}\sin \theta \cos \theta - 1 = 1 - 1[/tex]
[tex]=> \cos^2\theta + \sqrt{3}\sin \theta \cos \theta - 1 = 0[/tex]
- Rearrange the terms in L.H.S.
[tex]=> (\cos^2 \theta - 1 )+ \sqrt{3} \sin \theta \cos \theta = 0[/tex]
- Replace the terms in brackets with '-sin²θ' by using the identity (sin²θ + cos²θ = 1).
[tex]=> -\sin^2 \theta + \sqrt{3} \sin \theta \cos \theta = 0[/tex]
- Take 'sinθ' common from the whole expression in L.H.S.
[tex]=> \sin \theta(- \sin \theta + \sqrt{3}\cos \theta) = 0[/tex]
Now solve each part separately :-
1) [tex]\sin \theta = 0[/tex]
[tex]=> \theta = \sin^{-1}0 = 0[/tex]
2) [tex]-\sin \theta + \sqrt{3} \cos \theta = 0[/tex]
- Divide both the sides by 'cosθ'.
[tex]=> \frac{-\sin \theta + \sqrt{3}\cos \theta }{\cos \theta} = \frac{0}{\cos \theta}[/tex]
[tex]=> \frac{-sin \theta}{\cos \theta} + \frac{\sqrt{3} \cos \theta}{\cos \theta} = 0[/tex]
[tex]=> -\tan \theta + \sqrt{3} = 0[/tex]
- Add both the sides with 'tanθ'.
[tex]=> -\tan \theta + \sqrt{3} + \tan \theta = 0 + \tan \theta[/tex]
[tex]=> \tan \theta = \sqrt{3}[/tex]
[tex]=> \theta = \tan^{-1}\sqrt{3} = 60[/tex]
∴ θ = 0° , 60°
Answer:
Solution given:
[tex] \large{ {cos}^{2} \theta + \sqrt{3} sin \theta cos \theta = 1}[/tex]
[tex] 1-sin^{2} \theta+\sqrt{3} sin \theta cos \theta = 1[/tex]
[tex] 1-1 +sin^{2}\theta=\sqrt{3} sin \theta cos \theta = 1[/tex]
[tex] Sin\theta(sin\theta -\sqrt{3}cos\theta)[/tex]
Either
[tex] sin\theta=\sqrt{3} cos \theta [/tex]
[tex] \sqrt{sin\theta}{cos \theta}=\sqrt{3} [/tex]
[tex] Tan \theta =\sqrt{3}[/tex]
[tex] Tan \theta =Tan 60,Tan(180+60),Tan (360+60)[/tex]
[tex] \theta =60°,240°,420°[/tex]
in terms of π is
[tex] \theta =⅓π,\frac{4}{3}π,[/tex]
Or
[tex] Sin\theta=1[/tex]
[tex]Sin\theta=Sin0° ,Sin180°[/tex]
In terms of π is
[tex]\theta=0π,π[/tex]
so
[tex]\theta=0π,⅓π,π,\frac{4}{3}π,[/tex]
