Respuesta :
Answer:
Step-by-step explanation:
using formula
x1=5 , x2=5 , y1=6 , y2=-4
distance = [tex]\sqrt{(x2-x1)^{2}+(y2-y1)^{2} }[/tex]
=[tex]\sqrt{(5-5)^{2}+(4-6^{2} }[/tex]
=[tex]\sqrt{(0)^{2}+(-2)^{2} }[/tex]
=[tex]\sqrt{0+4}[/tex]
=[tex]\sqrt{4}[/tex]
=2 units
Answer:
10 units
Step-by-step explanation:
(5, 6) and (5, - 4)
To find the distance between two points, we use the distance formula:
[tex]d = \sqrt{(x_{2}-x_1)^2 + (y_2-y_1)^2 }[/tex]
Let's plug in what we know.
[tex]d = \sqrt{(5-5)^2 + (-4-6)^2 }[/tex]
Evaluate the parentheses.
[tex]d = \sqrt{(0)^2 + (-10)^2 }[/tex]
Evaluate the exponents.
[tex]d = \sqrt{(0) + (100) }[/tex]
Add.
[tex]d=\sqrt{100}[/tex]
Evaluate the radical.
d = ±10
Since distance cannot be negative, you answer is 10 units.
Hope this helps!
