Respuesta :
Answer:
3,645 π in³
Step-by-step explanation:
the ratio of the radius :
r1 : r2 = √196 : √324
= 14 : 18
= 7 : 9
the ratio of the volume:
v1 : v2 = 7³ : 9³
= 343 : 729
so, the volume of the larger cylinder =
729/343 x 1715π = 3,645 π in³
Answer:
since the cylinders are similar their area and volume will be proportional
[tex]\frac{lateral\:area \:of \:smaller \:cylinder}{laternal\: area \:of \:larger\: cylinder}=\frac{volume \:of\: larger\: cylinder}{volume \:of \:larger \:cylinder}[/tex]
[tex] \frac{196π}{324π}=\frac{1715π}{V}[/tex]
V=1715π*324π/126π
V=4410πin³
the volume of the larger cylinder is 4410πin³.
