contestada

Your class is selling boxes of flower seeds as a fundraiser. The total profit p depends on the amount x that your class charges for each box of seeds. The equation p= -0.5x2 + 36x - 231 models the profit of the fundraiser. What's the smallest amount, in dollars, that you can charge and make a profit of at least $363?​

Respuesta :

Answer:

The least amount is $75.50

Step-by-step explanation:

Given

[tex]p \to profit[/tex]

[tex]x \to amount[/tex]

[tex]p = -0.5x^2 + 36x - 231[/tex]

Required

The smallest amount to make at least 363

We have:

[tex]p = -0.5x^2 + 36x - 231[/tex]

Rewrite as:

[tex]-0.5x^2 + 36x - 231=p[/tex]

Substitute 363 for p

[tex]-0.5x^2 + 36x - 231 = 363[/tex]

Collect like terms

[tex]-0.5x^2 + 36x - 231 + 363 = 0[/tex]

[tex]-0.5x^2 + 36x + 132 = 0[/tex]

Using quadratic formula, we have:

[tex]x = \frac{-b \± \sqrt{b^2 - 4ac}}{2a}[/tex]

Where:

[tex]a = -0.5; b= 36; c = 132[/tex]

So, we have:

[tex]x = \frac{-36 \± \sqrt{36^2 - 4*-0.5*132}}{2*-0.5}[/tex]

[tex]x = \frac{-36 \± \sqrt{1560}}{-1}[/tex]

[tex]x = \frac{-36 \± 39.50}{-1}[/tex]

Split

[tex]x = \frac{-36 + 39.50}{-1}; x = \frac{-36 - 39.50}{-1}[/tex]

[tex]x = \frac{3.50}{-1}; x = \frac{-75.50}{-1}[/tex]

[tex]x = 75.50[/tex] and [tex]x = -3.50[/tex]

The amount can't be negative.

So:

[tex]x = 75.50[/tex]

Hence, the least amount is $75.50

RELAXING NOICE
Relax