Respuesta :
Answer:
The moment of inertia of disk B is 0.446 kilogram-square meters.
Explanation:
In this case, the moment of inertia of the disk B can be determined by means of the Principle of Conservation of Angular Momentum, whose model is:
[tex]I_{A}\cdot \omega_{A} + I_{B}\cdot \omega_{B} = (I_{A} + I_{B})\cdot \omega[/tex] (1)
Where:
[tex]I_{A}[/tex], [tex]I_{B}[/tex] - Moments of inertia of disks A and B, in kilogram-square meters.
[tex]\omega_{A}[/tex], [tex]\omega_{B}[/tex] - Initial angular velocities of disks A and B, in radians per second.
[tex]\omega[/tex] - Final angular velocity of the resulting system, in radians per second.
Let suppose that disk A rotates counterclockwise, whereas disk B rotates clockwise and that resulting system rotates counterclockwise. If we know that [tex]I_{A} = 3.44\,kg\cdot m^{2}[/tex], [tex]\omega_{A} = 5.69\,\frac{rad}{s}[/tex], [tex]\omega_{B} = -7.03\,\frac{rad}{s}[/tex] and [tex]\omega = 4.23\,\frac{rad}{s}[/tex], then the moment of inertia of the disk B is:
[tex]I_{A} \cdot (\omega_{A} - \omega) = I_{B}\cdot (\omega - \omega_{B})[/tex]
[tex]I_{B} = I_{A}\cdot \left(\frac{\omega_{A}-\omega}{\omega - \omega_{B}} \right)[/tex]
[tex]I_{B} = (3.44\,kg\cdot m^{2})\cdot \left(\frac{5.69\,\frac{rad}{s} - 4.23\,\frac{rad}{s} }{4.23\,\frac{rad}{s} + 7.03\,\frac{rad}{s} } \right)[/tex]
[tex]I_{B} = 0.446\,kg\cdot m^{2}[/tex]
The moment of inertia of disk B is 0.446 kilogram-square meters.