Respuesta :

The answer to your question is 14/5

Answer:

[tex]\boxed {\boxed {\sf z=2.8}}[/tex]

Step-by-step explanation:

The z-score helps describe a value's relationship to the mean. It tells us how many standard deviations a value is from the mean. The formula is:

[tex]z= \frac{x- \bar x}{s}[/tex]

where x is the value, x-bar is the mean, and s is the standard deviation.

We know the data set has a mean of 25 and a standard deviation of 5. The value we are finding the z score for is 39.

  • x= 39
  • x-bar= 25
  • s=5

Substitute the values into the formula.

[tex]z= \frac{ 39-25}{5}[/tex]

Solve the numerator.

[tex]z= \frac{ 14}{5}[/tex]

[tex]z=2.8[/tex]

The z-score for 39 is 2.8. This means a value of 39 is 2.8 standard deviations greater than the mean.

RELAXING NOICE
Relax