Solution :
a). The focal length of the lens is given as :
[tex]$\frac{1}{f}=(n-1)\left(\frac{1}{R_1}-\frac{1}{R_2}\right)$[/tex]
[tex]$\frac{1}{f}=(1.70-1)\left(\frac{1}{\infty}-\frac{1}{-13}\right)$[/tex]
[tex]$f=18.57 \ cm$[/tex]
The thin lens equation is :
[tex]$\frac{1}{f}=\frac{1}{d_i}+\frac{1}{d_o}$[/tex]
The distance of the image from the lens is
[tex]$d_i=\left(\frac{1}{f}-\frac{1}{d_o}\right)^{-1}$[/tex]
[tex]$d_i=\left(\frac{1}{18.57}-\frac{1}{22.5}\right)^{-1}$[/tex]
[tex]$=1.06 \ m$[/tex]
The magnification of the lens is :
[tex]$m=-\frac{d_i}{d_o}=\frac{h_i}{h_o}$[/tex]
The height of the image is :
[tex]$h_i=-\frac{d_i}{d_o}(h_o)$[/tex]
[tex]$h_i=-\frac{106.3 \ cm}{22.5 \ cm}(3.75 \ mm)$[/tex]
[tex]$=-17.7 \ cm$[/tex]
Thus, the real and the inverted image is formed at a distance of 1.06 m. And the size of the image is 17.7 cm
b). When the lens is reversed.
The focal length of the lens is given as :
[tex]$\frac{1}{f}=(n-1)\left(\frac{1}{R_1}-\frac{1}{R_2}\right)$[/tex]
[tex]$\frac{1}{f}=(1.70-1)\left(\frac{1}{13}-\frac{1}{\infty}\right)$[/tex]
[tex]$f=18.57 \ cm$[/tex]
The thin lens equation is :
[tex]$\frac{1}{f}=\frac{1}{d_i}+\frac{1}{d_o}$[/tex]
The distance of the image from the lens is
[tex]$d_i=\left(\frac{1}{f}-\frac{1}{d_o}\right)^{-1}$[/tex]
[tex]$d_i=\left(\frac{1}{18.57}-\frac{1}{22.5}\right)^{-1}$[/tex]
[tex]$=1.06 \ m$[/tex]
The magnification of the lens is :
[tex]$m=-\frac{d_i}{d_o}=\frac{h_i}{h_o}$[/tex]
The height of the image is :
[tex]$h_i=-\frac{d_i}{d_o}(h_o)$[/tex]
[tex]$h_i=-\frac{106.3 \ cm}{22.5 \ cm}(3.75 \ mm)$[/tex]
[tex]$=-17.7 \ cm$[/tex]
Thus, when the lens is reversed, a real and an inverted image is formed at a distance of 1.06 m. And the size of the image is 17.7 cm