Respuesta :
Answer:
[tex]\displaystyle V = 147 \pi \ cm^3[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Geometry
Volume of a Cone Formula: [tex]\displaystyle V = \frac{1}{3} \pi r^2h[/tex]
- r is radius
- h is height
Step-by-step explanation:
Step 1: Define
Identify
h = 9 cm
r = 7 cm
Step 2: Find Volume
- Substitute in variables [Volume of a Cone Formula]: [tex]\displaystyle V = \frac{1}{3} \pi (7 \ cm)^2(9 \ cm)[/tex]
- Evaluate exponents: [tex]\displaystyle V = \frac{1}{3} \pi (49 \ cm^2)(9 \ cm)[/tex]
- Multiply: [tex]\displaystyle V = \frac{1}{3} \pi (441 \ cm^3)[/tex]
- Multiply: [tex]\displaystyle V = 147 \pi \ cm^3[/tex]
Answer:
Solution given:
height[h]=9cm
radius [r]=7cm
volume of cone =?
we have
Volume of cone:⅓πr²h=⅓*π*7²*9=⅓*22/7*7²*9=
462cm³
volume of a right circular cone-shaped building with a height of 9 cm and a radius base of 7 cm is 462cm³.
