Respuesta :

Space

Answer:

[tex]\displaystyle V = 147 \pi \ cm^3[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Geometry

Volume of a Cone Formula: [tex]\displaystyle V = \frac{1}{3} \pi r^2h[/tex]

  • r is radius
  • h is height

Step-by-step explanation:

Step 1: Define

Identify

h = 9 cm

r = 7 cm

Step 2: Find Volume

  1. Substitute in variables [Volume of a Cone Formula]:                                     [tex]\displaystyle V = \frac{1}{3} \pi (7 \ cm)^2(9 \ cm)[/tex]
  2. Evaluate exponents:                                                                                         [tex]\displaystyle V = \frac{1}{3} \pi (49 \ cm^2)(9 \ cm)[/tex]
  3. Multiply:                                                                                                             [tex]\displaystyle V = \frac{1}{3} \pi (441 \ cm^3)[/tex]
  4. Multiply:                                                                                                             [tex]\displaystyle V = 147 \pi \ cm^3[/tex]
msm555

Answer:

Solution given:

height[h]=9cm

radius [r]=7cm

volume of cone =?

we have

Volume of cone:πr²h=⅓*π*7²*9=⅓*22/7*7²*9=

462cm³

volume of a right circular cone-shaped building with a height of 9 cm and a radius base of 7 cm is 462cm³.

RELAXING NOICE
Relax