Given:
The function is:
[tex]F(x)=2x^2+12x+5[/tex]
To find:
The zeroes of the given function by using the Method of Completing the square.
Solution:
We have,
[tex]F(x)=2x^2+12x+5[/tex]
It can be written as:
[tex]F(x)=2(x^2+6x)+5[/tex]
By Method of Completing the square add and subtract square of half of coefficient of x in the parenthesis.
[tex]F(x)=2(x^2+6x+(\dfrac{6}{2})^2-(\dfrac{6}{2})^2)+5[/tex]
[tex]F(x)=2(x^2+6x+(3)^2)-2(3)^2+5[/tex]
[tex]F(x)=2(x+3)^2-2(9)+5[/tex] [tex][\because (a+b)^2=a^2+2ab+b^2][/tex]
[tex]F(x)=2(x+3)^2-18+5[/tex]
[tex]F(x)=2(x+3)^2-13[/tex]
For zeroes, F(x)=0.
[tex]2(x+3)^2-13=0[/tex]
[tex]2(x+3)^2=13[/tex]
[tex](x+3)^2=\dfrac{13}{2}[/tex]
[tex](x+3)^2=6.5[/tex]
Taking square root on both sides, we get
[tex]x+3=\pm \sqrt{6.5}[/tex]
[tex]x=\pm \sqrt{6.5}-3[/tex]
[tex]x\approx 2.55-3[/tex] and [tex]x\approx -2.55-3[/tex]
[tex]x\approx -0.45[/tex] and [tex]x\approx -5.55[/tex]
Therefore, the zeroes of the given function are -0.45 and -5.55.