Respuesta :

[tex]x_{v}[/tex]Answer:

The vertex of an up - down facing parabola of the formy = ax" + bx + c is xy =

The parabola params are:

a = 8, b = -14, c =3

[tex]x_{v}=b/2a[/tex]

[tex]x_{v}[/tex]=-(-14)/2·8

simplify

[tex]x_{v}[/tex]=-(-14)/2·8

[tex]x_{v} = 7/8[/tex]

Plug in [tex]x_{v}[/tex]=7/8to find the [tex]y_{v}[/tex] value

[tex]y_{v}[/tex]= -25/8

Therefore the parabola vertex is

(7/8 , -25/8)

If a < 0, then the vertex is a maximum value

If a > 0, then the vertex is a minimum value

a = 8

Minimum(7/8 , -25/8)

RELAXING NOICE
Relax