Answer:
The answer is "[tex]\bold{\$7,200}[/tex]"
Explanation:
Using the High - Low method:
[tex]\to Variable \ cost= \frac{\text{(Highest Activity cost - Lowest Activity cost)}}{\text{( Highest Activity Units - Lowest Activity Units)}}[/tex]
[tex]= \frac{(\$18000 - \$9000)}{(6000 - 1000)}\\\\= \frac{(\$9000)}{(5000)}\\\\= \frac{(\$9)}{(5)}\\\\= \$1.8/ unit[/tex]
[tex]\to Fixed \ Cost = \text{Highest Activity cost} - \text{(Variable cost per unit} \times \text{Highest Activity Units)}[/tex]
[tex]= \$18000 - ( \$1.8 \times 6000)\\\\= \$18000 - \$ 10800 \\\\= \$7,200[/tex]