A box with a rectangular base and open top must have a volume of 128 f t 3 . The length of the base is twice the width of base. The base needs to be stronger than the sides, so it costs more. The base costs $9 per f t 2 , while the sides only cost $6 per f t 2 . We wish to find the dimensions of the box that minimize the cost of material used.

Respuesta :

Answer:

[tex]Width = 4ft[/tex]

[tex]Height = 4ft[/tex]

[tex]Length = 8ft[/tex]

Step-by-step explanation:

Given

[tex]Volume = 128ft^3[/tex]

[tex]L = 2W[/tex]

[tex]Base\ Cost = \$9/ft^2[/tex]

[tex]Sides\ Cost = \$6/ft^2[/tex]

Required

The dimension that minimizes the cost

The volume is:

[tex]Volume = LWH[/tex]

This gives:

[tex]128 = LWH[/tex]

Substitute [tex]L = 2W[/tex]

[tex]128 = 2W * WH[/tex]

[tex]128 = 2W^2H[/tex]

Make H the subject

[tex]H = \frac{128}{2W^2}[/tex]

[tex]H = \frac{64}{W^2}[/tex]

The surface area is:

Area = Area of Bottom + Area of Sides

So, we have:

[tex]A = LW + 2(WH + LH)[/tex]

The cost is:

[tex]Cost = 9 * LW + 6 * 2(WH + LH)[/tex]

[tex]Cost = 9 * LW + 12(WH + LH)[/tex]

[tex]Cost = 9 * LW + 12H(W + L)[/tex]

Substitute: [tex]H = \frac{64}{W^2}[/tex] and [tex]L = 2W[/tex]

[tex]Cost =9*2W*W + 12 * \frac{64}{W^2}(W + 2W)[/tex]

[tex]Cost =18W^2 + \frac{768}{W^2}*3W[/tex]

[tex]Cost =18W^2 + \frac{2304}{W}[/tex]

To minimize the cost, we differentiate

[tex]C' =2*18W + -1 * 2304W^{-2}[/tex]

Then set to 0

[tex]2*18W + -1 * 2304W^{-2} =0[/tex]

[tex]36W - 2304W^{-2} =0[/tex]

Rewrite as:

[tex]36W = 2304W^{-2}[/tex]

Divide both sides by W

[tex]36 = 2304W^{-3}[/tex]

Rewrite as:

[tex]36 = \frac{2304}{W^3}[/tex]

Solve for [tex]W^3[/tex]

[tex]W^3 = \frac{2304}{36}[/tex]

[tex]W^3 = 64[/tex]

Take cube roots

[tex]W = 4[/tex]

Recall that:

[tex]L = 2W[/tex]

[tex]L = 2 * 4[/tex]

[tex]L = 8[/tex]

[tex]H = \frac{64}{W^2}[/tex]

[tex]H = \frac{64}{4^2}[/tex]

[tex]H = \frac{64}{16}[/tex]

[tex]H = 4[/tex]

Hence, the dimension that minimizes the cost is:

[tex]Width = 4ft[/tex]

[tex]Height = 4ft[/tex]

[tex]Length = 8ft[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico