Answer:
[tex]Width = 4ft[/tex]
[tex]Height = 4ft[/tex]
[tex]Length = 8ft[/tex]
Step-by-step explanation:
Given
[tex]Volume = 128ft^3[/tex]
[tex]L = 2W[/tex]
[tex]Base\ Cost = \$9/ft^2[/tex]
[tex]Sides\ Cost = \$6/ft^2[/tex]
Required
The dimension that minimizes the cost
The volume is:
[tex]Volume = LWH[/tex]
This gives:
[tex]128 = LWH[/tex]
Substitute [tex]L = 2W[/tex]
[tex]128 = 2W * WH[/tex]
[tex]128 = 2W^2H[/tex]
Make H the subject
[tex]H = \frac{128}{2W^2}[/tex]
[tex]H = \frac{64}{W^2}[/tex]
The surface area is:
Area = Area of Bottom + Area of Sides
So, we have:
[tex]A = LW + 2(WH + LH)[/tex]
The cost is:
[tex]Cost = 9 * LW + 6 * 2(WH + LH)[/tex]
[tex]Cost = 9 * LW + 12(WH + LH)[/tex]
[tex]Cost = 9 * LW + 12H(W + L)[/tex]
Substitute: [tex]H = \frac{64}{W^2}[/tex] and [tex]L = 2W[/tex]
[tex]Cost =9*2W*W + 12 * \frac{64}{W^2}(W + 2W)[/tex]
[tex]Cost =18W^2 + \frac{768}{W^2}*3W[/tex]
[tex]Cost =18W^2 + \frac{2304}{W}[/tex]
To minimize the cost, we differentiate
[tex]C' =2*18W + -1 * 2304W^{-2}[/tex]
Then set to 0
[tex]2*18W + -1 * 2304W^{-2} =0[/tex]
[tex]36W - 2304W^{-2} =0[/tex]
Rewrite as:
[tex]36W = 2304W^{-2}[/tex]
Divide both sides by W
[tex]36 = 2304W^{-3}[/tex]
Rewrite as:
[tex]36 = \frac{2304}{W^3}[/tex]
Solve for [tex]W^3[/tex]
[tex]W^3 = \frac{2304}{36}[/tex]
[tex]W^3 = 64[/tex]
Take cube roots
[tex]W = 4[/tex]
Recall that:
[tex]L = 2W[/tex]
[tex]L = 2 * 4[/tex]
[tex]L = 8[/tex]
[tex]H = \frac{64}{W^2}[/tex]
[tex]H = \frac{64}{4^2}[/tex]
[tex]H = \frac{64}{16}[/tex]
[tex]H = 4[/tex]
Hence, the dimension that minimizes the cost is:
[tex]Width = 4ft[/tex]
[tex]Height = 4ft[/tex]
[tex]Length = 8ft[/tex]