Equal molar quantities of Ca2 and EDTA (H4Y) are added to make a 0.010 M solution of CaY2- at pH 10. The formation constant for CaY2- is 5.0 x 1010 and the fraction of unprotonated EDTA (Y4-) is 0.35 at pH10. Calculate the concentration of free Ca2 in this solution.

Respuesta :

Answer:

the concentration of free Ca2⁺ in this solution is 7.559 × 10⁻⁷

Explanation:

Given the data in the question;

[tex]Ca^{2+[/tex] + [tex]y^{4-[/tex] ⇄  [tex]CaY^{2-[/tex]

Formation constant Kf

Kf = [tex]CaY^{2-[/tex] / ( [[tex]Ca^{2+[/tex]][[tex]y^{4-[/tex]] ) = 5.0 × 10¹⁰

Now,

[[tex]y^{4-[/tex]] = [tex]\alpha _4CH_4Y[/tex]; ∝₄ = 0.35

so the equilibrium is;

[tex]Ca^{2+[/tex] + [tex]H_4Y[/tex] ⇄  [tex]CaY^{2-[/tex] + 4H⁺

Given that; [tex]CH_4Y[/tex] = [tex]Ca^{2+[/tex]     { 1 mol [tex]Ca^{2+[/tex]  reacts with 1 mol [tex]H_4Y[/tex]  }

so at equilibrium, [tex]CH_4Y[/tex] = [tex]Ca^{2+[/tex] = x

[tex]Ca^{2+[/tex] + [tex]y^{4-[/tex] ⇄  [tex]CaY^{2-[/tex]

x        + x         0.010-x

since Kf is high, them x will be small so, 0.010-x is approximately 0.010

so;

Kf = [tex]CaY^{2-[/tex] / ( [[tex]Ca^{2+[/tex]][[tex]y^{4-[/tex]] ) =  [tex]CaY^{2-[/tex] / ( [[tex]Ca^{2+[/tex]][[tex]\alpha _4CH_4Y[/tex]] )  = 5.0 × 10¹⁰

⇒ [tex]CaY^{2-[/tex] / ( [[tex]Ca^{2+[/tex]][[tex]\alpha _4CH_4Y[/tex]] )  = 5.0 × 10¹⁰

⇒ 0.010 / ( [x][ 0.35 × x] )  = 5.0 × 10¹⁰

⇒ 0.010 / 0.35x²  = 5.0 × 10¹⁰

⇒ x² = 0.010 / ( 0.35 × 5.0 × 10¹⁰ )

⇒ x² = 0.010 / 1.75 × 10¹⁰

⇒ x² = 0.010 / 1.75 × 10¹⁰

⇒ x² = 5.7142857 × 10⁻¹³

⇒ x = √(5.7142857 × 10⁻¹³)

⇒ x = 7.559 × 10⁻⁷

Therefore, the concentration of free Ca2⁺ in this solution is 7.559 × 10⁻⁷

ACCESS MORE