Respuesta :
Answer:
the concentration of free Ca2⁺ in this solution is 7.559 × 10⁻⁷
Explanation:
Given the data in the question;
[tex]Ca^{2+[/tex] + [tex]y^{4-[/tex] ⇄ [tex]CaY^{2-[/tex]
Formation constant Kf
Kf = [tex]CaY^{2-[/tex] / ( [[tex]Ca^{2+[/tex]][[tex]y^{4-[/tex]] ) = 5.0 × 10¹⁰
Now,
[[tex]y^{4-[/tex]] = [tex]\alpha _4CH_4Y[/tex]; ∝₄ = 0.35
so the equilibrium is;
[tex]Ca^{2+[/tex] + [tex]H_4Y[/tex] ⇄ [tex]CaY^{2-[/tex] + 4H⁺
Given that; [tex]CH_4Y[/tex] = [tex]Ca^{2+[/tex] { 1 mol [tex]Ca^{2+[/tex] reacts with 1 mol [tex]H_4Y[/tex] }
so at equilibrium, [tex]CH_4Y[/tex] = [tex]Ca^{2+[/tex] = x
∴
[tex]Ca^{2+[/tex] + [tex]y^{4-[/tex] ⇄ [tex]CaY^{2-[/tex]
x + x 0.010-x
since Kf is high, them x will be small so, 0.010-x is approximately 0.010
so;
Kf = [tex]CaY^{2-[/tex] / ( [[tex]Ca^{2+[/tex]][[tex]y^{4-[/tex]] ) = [tex]CaY^{2-[/tex] / ( [[tex]Ca^{2+[/tex]][[tex]\alpha _4CH_4Y[/tex]] ) = 5.0 × 10¹⁰
⇒ [tex]CaY^{2-[/tex] / ( [[tex]Ca^{2+[/tex]][[tex]\alpha _4CH_4Y[/tex]] ) = 5.0 × 10¹⁰
⇒ 0.010 / ( [x][ 0.35 × x] ) = 5.0 × 10¹⁰
⇒ 0.010 / 0.35x² = 5.0 × 10¹⁰
⇒ x² = 0.010 / ( 0.35 × 5.0 × 10¹⁰ )
⇒ x² = 0.010 / 1.75 × 10¹⁰
⇒ x² = 0.010 / 1.75 × 10¹⁰
⇒ x² = 5.7142857 × 10⁻¹³
⇒ x = √(5.7142857 × 10⁻¹³)
⇒ x = 7.559 × 10⁻⁷
Therefore, the concentration of free Ca2⁺ in this solution is 7.559 × 10⁻⁷