The side of a square is 7 m with a possible error of 0.05 m. Use differentials to approximate the maximum relative error in calculating the area of the square. Remember that the area of a square with side length s is A

Respuesta :

Answer:

Step-by-step explanation:

Given :

Length of the side of a square = 7 m

Possible error = 0.05 m

Area of the square of side s is [tex]$A=s^2$[/tex]

Therefore, [tex]$\frac{dA}{ds} = 2s$[/tex]

or dA = 2s . ds

    dA = 2 x 7 x 0.05

          = 0.7

Therefore, the percentage error is given by :

[tex]$=\frac{dA}{A}\times 100$[/tex]

[tex]$=\frac{0.7}{49}\times 100$[/tex]

= 1.4 %