Solution :
Given :
mass of the plank, m = 14 kg
length of the plank, l = 1.9 m
Distance between [tex]$F_2$[/tex] and the end at which [tex]$F_1$[/tex] is acting, [tex]$r_2$[/tex] = 0.49 m
Torque exerted by the weight of the plank is given by :
[tex]$\tau_w= r_{\perp} \times F$[/tex]
[tex]$=-\frac{1.9}{2} \times 14 \times 9.8$[/tex]
= -130 Nm
The torque exerted by [tex]$F_1$[/tex] is
[tex]$\tau_1= r_{1} \times F_1$[/tex]
[tex]$= 0 \times F_1$[/tex]
= 0
Torque exerted by [tex]$F_2$[/tex] is
[tex]$\tau_2= r_{2} \times F_2$[/tex]
[tex]$= 0.49 \times F_2$[/tex]
[tex]$= 0.49 F_2$[/tex]
Since the system is in equilibrium, the zero rotational acceleration occurs when the net external torque on the system is zero, i.e.
[tex]$\sum \tau = 0$[/tex]
Therefore, we get
[tex]$\sum \tau= \tau_1+\tau_2+\tau_w[/tex]
[tex]$0= 0+0.49F_2+(-130)$[/tex]
[tex]$F_2=\frac{130}{0.49}$[/tex]
= 265 N (approx)
We know that zero linear acceleration occurs when the net external force is zero on the system to achieve equilibrium, i.e.
[tex]$\sum F = 0$[/tex]
[tex]$\sum F = -F_1+F_2-mg=0$[/tex]
[tex]$F_1=F_2-mg$[/tex]
= 265 - (14 x 9.8)
= 128 N (approx)