Solution :
[tex]$P_1 = 120 \ psia$[/tex]
[tex]$P_2 = 20 \ psia$[/tex]
Using the data table for refrigerant-134a at P = 120 psia
[tex]$h_1=h_f=40.8365 \ Btu/lbm$[/tex]
[tex]$u_1=u_f=40.5485 \ Btu/lbm$[/tex]
[tex]$T_{sat}=87.745^\circ F$[/tex]
∴ [tex]$h_2=h_1=40.8365 \ Btu/lbm$[/tex]
For pressure, P = 20 psia
[tex]$h_{2f} = 11.445 \ Btu/lbm$[/tex]
[tex]$h_{2g} = 102.73 \ Btu/lbm$[/tex]
[tex]$u_{2f} = 11.401 \ Btu/lbm$[/tex]
[tex]$u_{2g} = 94.3 \ Btu/lbm$[/tex]
[tex]$T_2=T_{sat}=-2.43^\circ F$[/tex]
Change in temperature, [tex]$\Delta T = T_2-T_1$[/tex]
[tex]$\Delta T = -2.43-87.745$[/tex]
[tex]$\Delta T=-90.175^\circ F$[/tex]
Now we find the quality,
[tex]$h_2=h_f+x_2(h_g-h_f)$[/tex]
[tex]$40.8365=11.445+x_2(91.282)$[/tex]
[tex]$x_2=0.32198$[/tex]
The final energy,
[tex]$u_2=u_f+x_2.u_{fg}$[/tex]
[tex]$=11.401+0.32198(82.898)$[/tex]
[tex]$=38.09297 \ Btu/lbm$[/tex]
Change in internal energy
[tex]$\Delta u= u_2-u_1$[/tex]
= 38.09297-40.5485
= -2.4556