Solution :
Placing the[tex]$3 \ kg$[/tex] mass at the [tex]$\text{origin}$[/tex] and line up the square up with the axes.
[tex]$x_{cm} = \frac{\sum_i x_i m_i}{\sum_i m_i }$[/tex]
[tex]$=\frac{1.5 a + 1.5a +0 +0}{7.5}$[/tex]
[tex]$=\frac{3a}{7.5}$[/tex]
[tex]$=\frac{2a}{5}$[/tex]
[tex]$y_{cm} = \frac{\sum_i y_i m_i}{\sum_i m_i }$[/tex]
[tex]$=\frac{1.5 a + 1.5a +0 +0}{7.5}$[/tex]
[tex]$=\frac{3a}{7.5}$[/tex]
[tex]$=\frac{2a}{5}$[/tex]
Therefore, r = [tex]$\sqrt2 \left(\frac{2a}{5}\right)$[/tex]
[tex]$=\frac{2 \sqrt2}{5}a$[/tex]
It s given that the side of the square is a = 32.2 cm
So, r [tex]$=\frac{2 \sqrt2}{5}a$[/tex]
[tex]$=\frac{2 \sqrt2}{5}\times 32.2$[/tex]
= 18.21 cm
So the distance of the 3 kg mass from the center of mass, r= 18.21 cm