Respuesta :
Answer:
[tex]v = \frac{32\pi}{3}[/tex]
or
[tex]v=33.52[/tex]
Step-by-step explanation:
Given
[tex]f(x) = 4x - x^2[/tex]
[tex]g(x) = x^2[/tex]
[tex][a,b] = [0,2][/tex]
Required
The volume of the solid formed
Rotating about the x-axis.
Using the washer method to calculate the volume, we have:
[tex]\int dv = \int\limit^b_a \pi(f(x)^2 - g(x)^2) dx[/tex]
Integrate
[tex]v = \int\limit^b_a \pi(f(x)^2 - g(x)^2)\ dx[/tex]
[tex]v = \pi \int\limit^b_a (f(x)^2 - g(x)^2)\ dx[/tex]
Substitute values for a, b, f(x) and g(x)
[tex]v = \pi \int\limit^2_0 ((4x - x^2)^2 - (x^2)^2)\ dx[/tex]
Evaluate the exponents
[tex]v = \pi \int\limit^2_0 (16x^2 - 4x^3 - 4x^3 + x^4 - x^4)\ dx[/tex]
Simplify like terms
[tex]v = \pi \int\limit^2_0 (16x^2 - 8x^3 )\ dx[/tex]
Factor out 8
[tex]v = 8\pi \int\limit^2_0 (2x^2 - x^3 )\ dx[/tex]
Integrate
[tex]v = 8\pi [ \frac{2x^{2+1}}{2+1} - \frac{x^{3+1}}{3+1} ]|\limit^2_0[/tex]
[tex]v = 8\pi [ \frac{2x^{3}}{3} - \frac{x^{4}}{4} ]|\limit^2_0[/tex]
Substitute 2 and 0 for x, respectively
[tex]v = 8\pi ([ \frac{2*2^{3}}{3} - \frac{2^{4}}{4} ] - [ \frac{2*0^{3}}{3} - \frac{0^{4}}{4} ])[/tex]
[tex]v = 8\pi ([ \frac{2*2^{3}}{3} - \frac{2^{4}}{4} ] - [ 0 - 0])[/tex]
[tex]v = 8\pi [ \frac{2*2^{3}}{3} - \frac{2^{4}}{4} ][/tex]
[tex]v = 8\pi [ \frac{16}{3} - \frac{16}{4} ][/tex]
Take LCM
[tex]v = 8\pi [ \frac{16*4- 16 * 3}{12}][/tex]
[tex]v = 8\pi [ \frac{64- 48}{12}][/tex]
[tex]v = 8\pi * \frac{16}{12}[/tex]
Simplify
[tex]v = 8\pi * \frac{4}{3}[/tex]
[tex]v = \frac{32\pi}{3}[/tex]
or
[tex]v=\frac{32}{3} * \frac{22}{7}[/tex]
[tex]v=\frac{32*22}{3*7}[/tex]
[tex]v=\frac{704}{21}[/tex]
[tex]v=33.52[/tex]