A skydiver weighing 200 lbs with clothes that have a drag coefficient of .325 is falling in an area that has an atmospheric density of 1.225 kg/m2 (and assuming that altitude has a negligible effect on atmospheric density). The skydiver can change the body orientation from straight-erect with a cross-sectional area of 6 sqft to a belly-flat cross-sectional area of 24 sqft. Calculate the terminal velocity of the person when the body has straight and when the body has belly-flat orientations. Calculate the terminal velocity on these two different orientations.

Respuesta :

Answer:

The right solution is:

(a) 89.455 m/s

(b) 44.73 m/s

Explanation:

The given values are:

Mass,

m = 200 lbs

or,

   = [tex]\frac{200}{2.205} \ kg[/tex]

   = [tex]90.7 \ kg[/tex]

Air's density,

[tex]\delta = 1.225 \ kg/m^3[/tex]

Drag coefficient,

[tex]C_d=0.325[/tex]

When body is straight, area,

[tex]A_1=6 \ ft^2[/tex]

As we know,

Terminal velocity,

⇒  [tex]V_t=\sqrt{\frac{2W}{C_d \delta A} }[/tex]

or,

⇒      [tex]=\sqrt{\frac{2mg}{C_d \delta A} }[/tex]

At straight orientation,

⇒ [tex]V_t'=\sqrt{\frac{2\times 90.7\times 9.8}{0.325\times 1.225\times 0.558} }[/tex]

⇒      [tex]=\sqrt{\frac{1777.72}{0.223}}[/tex]

⇒      [tex]=89.455 \ m/s[/tex]

When belly flat,

⇒  [tex]V_t''=\sqrt{\frac{2\times 90.7\times 9.8}{0.325\times 1.225\times 0.558\times 4} }[/tex]

⇒        [tex]=\sqrt{\frac{1777.72}{0.889} }[/tex]

⇒        [tex]=44.73 \ m/s[/tex]

ACCESS MORE