Answer:
[tex]5.08\times 10^{-9}\ \text{m}[/tex]
Explanation:
h = Planck constant = [tex]6.626\times 10^{-34}\ \text{Js}[/tex]
[tex]\lambda[/tex] = Wavelength
m = Mass of electron = [tex]9.11\times 10^{-31}\ \text{kg}[/tex]
[tex]\Delta V[/tex] = Potential difference = 14.6 kV
e = Charge of electron = [tex]1.6\times 10^{-19}\ \text{C}[/tex]
d = Distance between slits
[tex]\sin\theta=\dfrac{8.8\times 10^{-3}}{4.4}[/tex]
We have the relation
[tex]\dfrac{h}{\lambda}=\sqrt{2me\Delta V}\\\Rightarrow \lambda=\dfrac{h}{\sqrt{2me\Delta V}}\\\Rightarrow \lambda=\dfrac{6.626\times 10^{-34}}{\sqrt{2\times 9.1\times 10^{-31}\times 1.6\times 10^{-19}\times 14.6\times 10^3}}\\\Rightarrow \lambda=1.016\times 10^{-11}\ \text{m}[/tex]
Wavelength is given by
[tex]d\sin\theta=\lambda\\\Rightarrow d=\dfrac{\lambda}{\sin\theta}\\\Rightarrow d=\dfrac{1.016\times 10^{-11}}{\dfrac{8.8\times 10^{-3}}{4.4}}\\\Rightarrow d=5.08\times 10^{-9}\ \text{m}[/tex]
The distance between the slits is [tex]5.08\times 10^{-9}\ \text{m}[/tex].