A beam of electrons is accelerated across a potential of 14.60 kV before passing through two slits. The electrons form an interference pattern on a screen 4.40 m in front of the slits. The first-order maximum is 8.80 mm from the central maximum. What is the distance between the slits

Respuesta :

Answer:

[tex]5.08\times 10^{-9}\ \text{m}[/tex]

Explanation:

h = Planck constant = [tex]6.626\times 10^{-34}\ \text{Js}[/tex]

[tex]\lambda[/tex] = Wavelength

m = Mass of electron = [tex]9.11\times 10^{-31}\ \text{kg}[/tex]

[tex]\Delta V[/tex] = Potential difference = 14.6 kV

e = Charge of electron = [tex]1.6\times 10^{-19}\ \text{C}[/tex]

d = Distance between slits

[tex]\sin\theta=\dfrac{8.8\times 10^{-3}}{4.4}[/tex]

We have the relation

[tex]\dfrac{h}{\lambda}=\sqrt{2me\Delta V}\\\Rightarrow \lambda=\dfrac{h}{\sqrt{2me\Delta V}}\\\Rightarrow \lambda=\dfrac{6.626\times 10^{-34}}{\sqrt{2\times 9.1\times 10^{-31}\times 1.6\times 10^{-19}\times 14.6\times 10^3}}\\\Rightarrow \lambda=1.016\times 10^{-11}\ \text{m}[/tex]

Wavelength is given by

[tex]d\sin\theta=\lambda\\\Rightarrow d=\dfrac{\lambda}{\sin\theta}\\\Rightarrow d=\dfrac{1.016\times 10^{-11}}{\dfrac{8.8\times 10^{-3}}{4.4}}\\\Rightarrow d=5.08\times 10^{-9}\ \text{m}[/tex]

The distance between the slits is [tex]5.08\times 10^{-9}\ \text{m}[/tex].

ACCESS MORE