Answer:
[tex]T=35.625sec[/tex]
Explanation:
From the question we are told that:
Length [tex]L=100 m[/tex]
Width [tex]W=50m[/tex]
Velocity of Car A [tex]V_A=5m/s[/tex]
Velocity of Car B [tex]V_B=3m/s[/tex]
Distance traveled by car A before car B moves
[tex]d_l=5*3[/tex]
[tex]d_l=15[/tex]
Therefore total distance traveled at same time interval
[tex]D=total\ distance-d_l[/tex]
Where
Total distance=Perimeter of rectangle
[tex]P=2(L+B)[/tex]
[tex]P=2(100+50)[/tex]
[tex]P=300[/tex]
Therefore
[tex]D=total\ distance-d_l[/tex]
[tex]D=300-15\\D=285m[/tex]
Generally the equation for time taken to meet is mathematically given by
[tex]T=\frac{Distance D}{Relative\ speed V_r}[/tex]
Where
Relative speed = Speed of car A +Speed of car B
[tex]V_r=V_A+V_B[/tex]
[tex]V_r=5+3[/tex]
[tex]V_r=8m/s[/tex]
Therefore the time taken to meet
[tex]T=\frac{ D}{ V_r}[/tex]
[tex]T=\frac{ 285}{ 8}[/tex]
[tex]T=35.625sec[/tex]