Respuesta :
Answer:
a) the probability of committing a type I error if the true proportion is p = 0.6 is 0.0548
b)
- the probability of committing a type II error for the alternative hypotheses p = 0.3 is 0.3504
- the probability of committing a type II error for the alternative hypotheses p = 0.4 is 0.6177
- the probability of committing a type II error for the alternative hypotheses p = 0.5 is 0.8281
Step-by-step explanation:
Given the data in the question;
proportion p = 0.6
sample size n = 10
binomial distribution
let x rep number of orders for raw materials arriving late in the sample.
(a) probability of committing a type I error if the true proportion is p = 0.6;
∝ = P( type I error )
= P( reject null hypothesis when p = 0.6 )
= ³∑[tex]_{x=0[/tex] b( x, n, p )
= ³∑[tex]_{x=0[/tex] b( x, 10, 0.6 )
= ³∑[tex]_{x=0[/tex] [tex]\left[\begin{array}{ccc}10\\x\\\end{array}\right][/tex][tex](0.6)^x[/tex][tex]( 1 - 0.6 )^{10-x[/tex]
∝ = 0.0548
Therefore, the probability of committing a type I error if the true proportion is p = 0.6 is 0.0548
b)
the probability of committing a type II error for the alternative hypotheses p = 0.3
β = P( type II error )
= P( accept the null hypothesis when p = 0.3 )
= ¹⁰∑[tex]_{x=4[/tex] b( x, n, p )
= ¹⁰∑[tex]_{x=4[/tex] b( x, 10, 0.3 )
= ¹⁰∑[tex]_{x=4[/tex] [tex]\left[\begin{array}{ccc}10\\x\\\end{array}\right][/tex][tex](0.3)^x[/tex][tex]( 1 - 0.3 )^{10-x[/tex]
= 1 - ³∑[tex]_{x=0[/tex] [tex]\left[\begin{array}{ccc}10\\x\\\end{array}\right][/tex][tex](0.3)^x[/tex][tex]( 1 - 0.3 )^{10-x[/tex]
= 1 - 0.6496
= 0.3504
Therefore, the probability of committing a type II error for the alternative hypotheses p = 0.3 is 0.3504
the probability of committing a type II error for the alternative hypotheses p = 0.4
β = P( type II error )
= P( accept the null hypothesis when p = 0.4 )
= ¹⁰∑[tex]_{x=4[/tex] b( x, n, p )
= ¹⁰∑[tex]_{x=4[/tex] b( x, 10, 0.4 )
= ¹⁰∑[tex]_{x=4[/tex] [tex]\left[\begin{array}{ccc}10\\x\\\end{array}\right][/tex][tex](0.4)^x[/tex][tex]( 1 - 0.4 )^{10-x[/tex]
= 1 - ³∑[tex]_{x=0[/tex] [tex]\left[\begin{array}{ccc}10\\x\\\end{array}\right][/tex][tex](0.4)^x[/tex][tex]( 1 - 0.4 )^{10-x[/tex]
= 1 - 0.3823
= 0.6177
Therefore, the probability of committing a type II error for the alternative hypotheses p = 0.4 is 0.6177
the probability of committing a type II error for the alternative hypotheses p = 0.5
β = P( type II error )
= P( accept the null hypothesis when p = 0.5 )
= ¹⁰∑[tex]_{x=4[/tex] b( x, n, p )
= ¹⁰∑[tex]_{x=4[/tex] b( x, 10, 0.5 )
= ¹⁰∑[tex]_{x=4[/tex] [tex]\left[\begin{array}{ccc}10\\x\\\end{array}\right][/tex][tex](0.5)^x[/tex][tex]( 1 - 0.5 )^{10-x[/tex]
= 1 - ³∑[tex]_{x=0[/tex] [tex]\left[\begin{array}{ccc}10\\x\\\end{array}\right][/tex][tex](0.5)^x[/tex][tex]( 1 - 0.5 )^{10-x[/tex]
= 1 - 0.1719
= 0.8281
Therefore, the probability of committing a type II error for the alternative hypotheses p = 0.5 is 0.8281
The probability of committing a type I is 0.0548, type II error for p = 0.3 is 0.3504, type II error for p = 0.4 is 0.6177, type II error for s p = 0.5 is 0.8281.
The sample size n = 10
What is binomial distribution?
Binomial distribution summarizes the number of trials, or observations when each trial has the same probability of attaining one particular value.
[tex]\rm p= \left[\begin{array}{ccc}n\\x\\\end{array}\right] \times p^{x} \times q^{n-x}[/tex]
(a) Probability of committing a type I error if the true proportion is p = 0.6;
∝ = P( type I error )
= P( reject null hypothesis when p = 0.6 )
[tex]\rm p= \left[\begin{array}{ccc}10\\x\\\end{array}\right] \times 0.6^{x} \times 0.6^{10-x}\\[/tex]
∝ = 0.0548
Therefore, the probability of committing a type I error if the true proportion is p = 0.6 is 0.0548
b) The probability of committing a type II error for the alternative hypotheses p = 0.3
β = P( type II error )
= P( accept the null hypothesis when p = 0.3 ) = ¹⁰∑
[tex]\rm p= \left[\begin{array}{ccc}10\\x\\\end{array}\right] \times 0.3^{x} \times 0.3^{10-x}\\[/tex]
= 1 - ³∑
= 1 - 0.6496
= 0.3504
Therefore, the probability of committing a type II error for the alternative hypotheses p = 0.3 is 0.3504
The probability of committing a type II error for the alternative hypotheses p = 0.4
β = P( type II error )
= P( accept the null hypothesis when p = 0.4 )
[tex]\rm \left[\begin{array}{ccc}10\\x\\\end{array}\right] \times 0.4^{x} \times 0.4^{10-x}\\[/tex] = ¹⁰∑
= 1 - ³∑
= 1 - 0.3823
= 0.6177
Therefore, the probability of committing a type II error for the alternative hypotheses p = 0.4 is 0.6177
The probability of committing a type II error for the alternative hypotheses p = 0.5
β = P( type II error )
= P( accept the null hypothesis when p = 0.5 )
¹⁰∑ = [tex]\rm \left[\begin{array}{ccc}10\\x\\\end{array}\right] \times 0.5^{x} \times 0.5^{10-x}\\[/tex]
= 1 - ³∑
= 1 - 0.1719
= 0.8281
Therefore, the probability of committing a type II error for the alternative hypotheses p = 0.5 is 0.8281
Learn more about Binomial distribution here:
https://brainly.com/question/12734585