Answer:
[tex] \displaystyle b)y = { 3}^{ - x} + 1[/tex]
Step-by-step explanation:
we are given a exponential function
[tex] \displaystyle y = {3}^{x} + 1[/tex]
we want to figure out the equation of the new graph reflected across the y-axis
remember that,
[tex] \rm\displaystyle (x,y) \xrightarrow{ \text{ reflection over y - axis}}( - x,y)[/tex]
let y be [tex]3^x+1[/tex] so,
[tex] \rm\displaystyle (x,y) \xrightarrow{ \text{ reflection over y - axis}}( - x, {3}^{ - x} + 1 )[/tex]
hence,
the equation of the new graph
[tex] \displaystyle y = { 3}^{ - x} + 1[/tex]