Respuesta :

Given:

The values are [tex]a=0.\overline{6},b=0.75[/tex].

To find:

The values of [tex]ab[/tex] and [tex]\dfrac{a}{b}[/tex].

Solution:

We have,

[tex]a=0.\overline{6}[/tex]

[tex]a=0.666...[/tex]                     ...(i)

Multiply both sides by 10.

[tex]10a=6.666...[/tex]                 ...(ii)

Subtracting (i) from (ii), we get

[tex]10a-a=6.666...-0.666...[/tex]

[tex]9a=6[/tex]

[tex]a=\dfrac{6}{9}[/tex]

[tex]a=\dfrac{2}{3}[/tex]

And,

[tex]b=0.75[/tex]

[tex]b=\dfrac{75}{100}[/tex]

[tex]b=\dfrac{3}{4}[/tex]

Now, the product of a and b is:

[tex]ab=\dfrac{2}{3}\times \dfrac{3}{4}[/tex]

[tex]ab=\dfrac{1}{2}[/tex]

The quotient of a and b is:

[tex]\dfrac{a}{b}=\dfrac{\dfrac{2}{3}}{\dfrac{3}{4}}[/tex]

[tex]\dfrac{a}{b}=\dfrac{2}{3}\times \dfrac{4}{3}[/tex]

[tex]\dfrac{a}{b}=\dfrac{8}{9}[/tex]

Therefore, the required values are [tex]ab=\dfrac{1}{2}[/tex] and [tex]\dfrac{a}{b}=\dfrac{8}{9}[/tex].

talksp

Answer:

ab = 1/2 and a/b = 8/9

Step-by-step explanation:

took test