Respuesta :
Answer:
See Below.
Step-by-step explanation:
We want to verify the equation:
[tex]\displaystyle \frac{1}{\sec\alpha+1}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}[/tex]
We can convert sec(α) to 1 / cos(α):
[tex]\displaystyle \frac{1}{1/\cos\alpha+1}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}[/tex]
Multiply both layers of the first fraction by cos(α):
[tex]\displaystyle \frac{\cos\alpha}{1+\cos\alpha}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}[/tex]
Create a common denominator. We can multiply the first fraction by (1 - cos(α)):
[tex]\displaystyle \frac{\cos\alpha(1-\cos\alpha)}{(1+\cos\alpha)(1-\cos\alpha)}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}[/tex]
Simplify:
[tex]\displaystyle \frac{\cos\alpha(1-\cos\alpha)}{1-\cos^2\alpha}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}[/tex]
From the Pythagorean Identity, we know that cos²(α) + sin²(α) = 1 or equivalently, 1 - cos²(α) = sin²(α). Substitute:
[tex]\displaystyle \frac{\cos\alpha(1-\cos\alpha)}{\sin^2\alpha}-\frac{\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha }{\sin^2\alpha }-\frac{1}{\sec\alpha -1}[/tex]
Subtract:
[tex]\displaystyle \frac{\cos\alpha(1-\cos\alpha)-\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}[/tex]
Distribute:
[tex]\displaystyle \frac{\cos\alpha-\cos^2\alpha-\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}[/tex]
Rewrite:
[tex]\displaystyle \frac{(\cos\alpha)-(\cos^2\alpha+\cos\alpha)}{\sin^2\alpha}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}[/tex]
Split:
[tex]\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{\cos^2\alpha+\cos\alpha}{\sin^2\alpha}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}[/tex]
Factor the second fraction, and substitute sin²(α) for 1 - cos²(α):
[tex]\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{\cos\alpha(\cos\alpha+1)}{1-\cos^2\alpha}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}[/tex]
Factor:
[tex]\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{\cos\alpha(\cos\alpha+1)}{(1-\cos\alpha)(1+\cos\alpha)}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}[/tex]
Cancel:
[tex]\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{\cos\alpha}{(1-\cos\alpha)}=\frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}[/tex]
Divide the second fraction by cos(α):
[tex]\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}=\displaystyle \frac{\cos\alpha}{\sin^2\alpha}-\frac{1}{\sec\alpha-1}[/tex]
Hence proven.