Answer:
B = 49.1°
C = 93.9°
c = 77.9
Step-by-step explanation:
Given:
a = 47, b = 59, and A = 37°
Required:
B, C, and c
Solution:
✔️To find B, apply the law of sines:
[tex] \frac{sin(A)}{a} = \frac{sin(B)}{b} [/tex]
Plug in the values
[tex] \frac{sin(37)}{47} = \frac{sin(B)}{59} [/tex]
Cross multiply
[tex] 47*sin(B) = sin(37)*59 [/tex]
Divide both sides by 47
[tex] \frac{47*sin(B)}{47} = \frac{sin(37)*59}{47} [/tex]
[tex] sin(B) = 0.7555 [/tex]
[tex] B = sin^{-1}(0.7555) [/tex]
[tex] B = sin^{-1}(0.7555) [/tex]
B = 49.0690779° ≈ 49.1° (nearest tenth)
✔️C = 180° - (A + B) (sum of triangle)
C = 180° - (37° + 49.1°)
C = 93.9°
✔️To find c, apply the law of sines:
[tex] \frac{sin(B)}{b} = \frac{sin(C)}{c} [/tex]
Plug in the values
[tex] \frac{sin(49.1)}{59} = \frac{sin(93.9)}{c} [/tex]
Cross multiply
[tex] c*sin(49.1) = sin(93.9)*59 [/tex]
Divide both sides by sin(49.1)
[tex] c = \frac{sin(93.9)*59}{sin(49.1)} [/tex]
c = 77.8766982
c ≈ 77.9 (nearest tenth)