Find the projection of u onto v
URGENT HELP

Given:
Two vectors are:
[tex]u=\left <0,6\right>[/tex]
[tex]v=\left <2,17\right>[/tex]
To find:
The projection of u onto v.
Solution:
Magnitude of a vector [tex]v=\left <a,b\right>[/tex] is:
[tex]|v|=\sqrt{a^2+b^2}[/tex]
Dot product of two vector [tex]v_1=\left <a_1,b_1\right>[/tex] and [tex]v_2=\left <a_2,b_2\right>[/tex] is:
[tex]v_1\cdot v_2=a_1a_2+b_1b_2[/tex]
Formula for projection of u onto v is:
[tex]Proj_vu=\dfrac{u\cdot v}{|v|^2}v[/tex]
[tex]Proj_vu=\dfrac{\left <0,6\right>\cdot \left <2,17\right>}{(\sqrt{2^2+17^2)^2}}\left <2,17\right>[/tex]
[tex]Proj_vu=\dfrac{0\cdot 2+6\cdot 17}{4+289}\left <2,17\right>[/tex]
[tex]Proj_vu=\dfrac{0+102}{293}\left <2,17\right>[/tex]
On further simplification, we get
[tex]Proj_vu=\dfrac{102}{293}\left <2,17\right>[/tex]
[tex]Proj_vu=\left <\dfrac{102}{293}\cdot 2,\dfrac{102}{293}\cdot 17\right>[/tex]
[tex]Proj_vu=\left <\dfrac{204}{293},\dfrac{1734}{293}\right>[/tex]
Therefore, the projection of u onto v is [tex]Proj_vu=\left <\dfrac{204}{293},\dfrac{1734}{293}\right>[/tex].