Answer:
θi = 47.7°
Explanation:
The formula for the refractive index is as follows:
[tex]n = \frac{Sin\theta_i}{Sin\theta_r}[/tex]
where,
n = refractive index = 1.75
θi = angle of incidence = ?
θr = angle of refraction = 25°
Therefore,
[tex]1.75 = \frac{Sin\ \theta_i}{Sin\ 25^o} \\\\(1.75)(Sin\ \ 25^o) = Sin\ \theta_i\\\\\theta_i = Sin^{-1}(0.739)[/tex]
θi = 47.7°