Respuesta :

Given:

The equation is:

[tex]4x+2xy^2+44=y^3[/tex]

To find:

The equation of the tangent on the given equation at point (-3,2).

Solution:

We have,

[tex]4x+2xy^2+44=y^3[/tex]

Differentiate with respect to x.

[tex]4(1)+2[x(2yy')+y^2(1)]+0=3y^2y'[/tex]

[tex]4+4xyy'+2y^2=3y^2y'[/tex]

[tex]4+2y^2=3y^2y'-4xyy'[/tex]

[tex]4+2y^2=(3y^2-4xy)y'[/tex]

Isolate y'.

[tex]\dfrac{4+2y^2}{3y^2-4xy}=y'[/tex]

Now, we need to find the value of the derivative at point (-3,2).

[tex]y'_{(-3,2)}=\dfrac{4+2(2)^2}{3(2)^2-4(-3)(2)}[/tex]

[tex]y'_{(-3,2)}=\dfrac{4+8}{12+24}[/tex]

[tex]y'_{(-3,2)}=\dfrac{12}{36}[/tex]

[tex]y'_{(-3,2)}=\dfrac{1}{3}[/tex]

It means the slope of the tangent line is [tex]\dfrac{1}{3}[/tex].

The equation of tangent line that passes through the point (-3,2) with slope [tex]\dfrac{1}{3}[/tex] is:

[tex]y-y_1=m(x-x_1)[/tex]

[tex]y-2=\dfrac{1}{3}(x-(-3))[/tex]

[tex]y-2=\dfrac{1}{3}x+1[/tex]

[tex]y=\dfrac{1}{3}x+1+2[/tex]

[tex]y=\dfrac{1}{3}x+3[/tex]

Therefore, the equation of tangent line is [tex]y=\dfrac{1}{3}x+3[/tex].

ACCESS MORE