Respuesta :

Space

Answer:

[tex]\displaystyle r \approx 5.8 \ ft[/tex]

General Formulas and Concepts:

Symbols

  • π (pi) ≈ 3.14

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Geometry

Volume of a Sphere Formula: [tex]\displaystyle V = \frac{4}{3}\pi r^3[/tex]

  • r is radius

Step-by-step explanation:

Step 1: Define

Identify variables

Volume V = 797 ft³

Step 2: Solve for r

  1. Substitute in variables [Volume of a Sphere Formula]:                                 [tex]\displaystyle 797 \ ft^3 = \frac{4}{3}\pi r^3[/tex]
  2. [Division Property of Equality] Isolate r term:                                                 [tex]\displaystyle \frac{2391}{4 \pi} \ ft^3 =r^3[/tex]
  3. Rewrite:                                                                                                             [tex]\displaystyle r^3 = \frac{2391}{4 \pi} \ ft^3[/tex]
  4. [Equality Property] Cube root both sides:                                                       [tex]\displaystyle r = \frac{4782^{\frac{1}{3}}}{2 \pi^{\frac{1}{3}}} \ ft[/tex]
  5. Evaluate:                                                                                                           [tex]\displaystyle r = 5.75162 \ ft[/tex]
  6. Round:                                                                                                                [tex]\displaystyle r \approx 5.8 \ ft[/tex]

Otras preguntas

ACCESS MORE