Respuesta :
Answer:
[tex]\displaystyle r \approx 5.8 \ ft[/tex]
General Formulas and Concepts:
Symbols
- π (pi) ≈ 3.14
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Geometry
Volume of a Sphere Formula: [tex]\displaystyle V = \frac{4}{3}\pi r^3[/tex]
- r is radius
Step-by-step explanation:
Step 1: Define
Identify variables
Volume V = 797 ft³
Step 2: Solve for r
- Substitute in variables [Volume of a Sphere Formula]: [tex]\displaystyle 797 \ ft^3 = \frac{4}{3}\pi r^3[/tex]
- [Division Property of Equality] Isolate r term: [tex]\displaystyle \frac{2391}{4 \pi} \ ft^3 =r^3[/tex]
- Rewrite: [tex]\displaystyle r^3 = \frac{2391}{4 \pi} \ ft^3[/tex]
- [Equality Property] Cube root both sides: [tex]\displaystyle r = \frac{4782^{\frac{1}{3}}}{2 \pi^{\frac{1}{3}}} \ ft[/tex]
- Evaluate: [tex]\displaystyle r = 5.75162 \ ft[/tex]
- Round: [tex]\displaystyle r \approx 5.8 \ ft[/tex]