Respuesta :
[tex]nPr = \frac{n!}{(n - r)!} [/tex]
[tex]15P4 = \frac{15!}{(15 - 4)!} = \frac{15!}{11!} \\ = \frac{15 \times 14 \times 13 \times 12 \times 11!}{11!} \\ 15 \times 14 \times 13 \times 12 = 32760[/tex]
The permutation of the given values will be [tex]32,760[/tex].
What is permutation ?
A permutation is a mathematical calculation of the number of ways a particular set can be arranged, where the order of the arrangement matters.
Permutation [tex]^nP_{r}= \frac{n!}{(n-r)!}[/tex]
We have,
[tex]n = 15[/tex]
And
[tex]r = 4[/tex]
So, using Permutation Formula;
Permutation [tex]^nP_{r}= \frac{n!}{(n-r)!}[/tex]
i.e.
[tex]^nP_{r}= \frac{15!}{(15-4)!}[/tex]
[tex]= \frac{15!}{11!}= \frac{15*14*13*12*11!}{11!}[/tex]
Now, cancelling factorial terms,
We get,
[tex]^nP_{r}= 15*14*13*12[/tex]
[tex]^nP_{r} =32760[/tex]
So, the value is [tex]32760[/tex].
Hence, we can say that the permutation of the given values will be [tex]32,760[/tex].
To know more about Permutation click here
https://brainly.com/question/9283678
#SPJ2