Respuesta :

Answer:

28. x=6  29. x=15  30. -56/5  31. -3   32. -10   33.  9.6

Step-by-step explanation:

The statement "y varies inversely as x" means that there is a constant (a number that doesn't change)  k  so that

[tex]y=\frac{k}{x}[/tex]

28. y = 12 when x = 3, so [tex]12=\frac{k}{3} \Rightarrow k=(12)(3)=36[/tex].  Now that you know the value of  k  (in THIS problem!), plug in 6 for  y  to find  x.

[tex]6=\frac{36}{x}\\6x=36\\x=6[/tex]

All these problems work the same way.

29. [tex]5=\frac{k}{6} \Rightarrow 5(6)=k \Rightarrow k=30[/tex]  Then, [tex]2=\frac{30}{x} \Rightarrow 2x = 30 \Rightarrow x=15.[/tex]

30.  

 [tex]4=\frac{k}{14} \Rightarrow (4)(14)=k \Rightarrow k=56\\-5=\frac{56}{x} \Rightarrow -5x=56 \Rightarrow x = -\frac{56}{5}[/tex]

31.

[tex]9=\frac{k}{9} \Rightarrow 81=k\\\\y=\frac{81}{-27}=-3[/tex]

RELAXING NOICE
Relax