+show work PLEASE HELP!!

Answer:
28. x=6 29. x=15 30. -56/5 31. -3 32. -10 33. 9.6
Step-by-step explanation:
The statement "y varies inversely as x" means that there is a constant (a number that doesn't change) k so that
[tex]y=\frac{k}{x}[/tex]
28. y = 12 when x = 3, so [tex]12=\frac{k}{3} \Rightarrow k=(12)(3)=36[/tex]. Now that you know the value of k (in THIS problem!), plug in 6 for y to find x.
[tex]6=\frac{36}{x}\\6x=36\\x=6[/tex]
All these problems work the same way.
29. [tex]5=\frac{k}{6} \Rightarrow 5(6)=k \Rightarrow k=30[/tex] Then, [tex]2=\frac{30}{x} \Rightarrow 2x = 30 \Rightarrow x=15.[/tex]
30.
[tex]4=\frac{k}{14} \Rightarrow (4)(14)=k \Rightarrow k=56\\-5=\frac{56}{x} \Rightarrow -5x=56 \Rightarrow x = -\frac{56}{5}[/tex]
31.
[tex]9=\frac{k}{9} \Rightarrow 81=k\\\\y=\frac{81}{-27}=-3[/tex]