Answer:
[tex]Sum = 64[/tex]
Step-by-step explanation:
Given
[tex]n = 55[/tex]
[tex]x \to 55\ digit[/tex] 1's
Required
The sum of the [tex]digits[/tex] of the [tex]product[/tex]
To do this, we start with smaller numbers
[tex]55*11 = 605[/tex] ---- 2 digits
[tex]55*111 = 6105[/tex] --- 3 digits
[tex]55*1111 = 61105[/tex] -- 4 digits
[tex]55*11111 = 611105[/tex] -- 5 digits
[tex]55*111111 = 6111105[/tex] --- 6 digits
Notice that as the 1's increase on the left-hand side, the 1's increase on the right-hand side
The difference between the count of both 1's is 2 1's
So, for n digits, we have: 6[n - 2, 1's]05
So, the sum is:
[tex]Sum = 6 + (n - 2) + 0 + 5[/tex]
For 55 digit, [tex]n = 55\\[/tex]
So, we have:
[tex]Sum = 6 + (55 - 2) + 0 + 5[/tex]
[tex]Sum = 6 + 53 + 0 + 5[/tex]
[tex]Sum = 64[/tex]