Respuesta :
Answer:
[tex]A=9600cn^2[/tex]
Step-by-step explanation:
From the question we are told that:
Ratio of square base and slant height [tex]R=6:5[/tex]
Volume [tex]V=48000cm^3[/tex]
Generally the equation for height Pyramid h is mathematically given by
[tex]h^2=s^2+(\frac{1}{2}a^2)[/tex]
[tex]h=\sqrt{s^2+(\frac{1}{2}a)^2)}[/tex]
[tex]h=\sqrt{5^2+3^2}[/tex]
[tex]h=4[/tex]
Where
a= base Length
s=slant height of pyramid
Therefore the ratio of height is
[tex]h=4[/tex]
Generally the equation for The Volume of Square based Pyramid V is mathematically given by
[tex]V=a^2\frac{h}{3}[/tex]
[tex]V=6^2\frac{4}{3}[/tex]
[tex]V=48[/tex]
Therefore the ratio of volume is
V=48
Generally for V=4800
Therefore
[tex]a=60[/tex]
[tex]h=40[/tex]
Generally the equation for Area of Square based Pyramid A is mathematically given by
[tex]A=a^2+2a\sqrt{\frac{a^2}{4}+h^2 }[/tex]
[tex]A=60^2+2(60)\sqrt{\frac{(60)^2}{4}+(40)^2}[/tex]
[tex]A=9600cn^2[/tex]
Therefore the Area of Square based Pyramid A is
[tex]A=9600cn^2[/tex]