The square based pyramid whose length of side of square base and slant height are in the ratio 6:5 and volume is 48000cm^3 .Find the total surface area

Respuesta :

Answer:

[tex]A=9600cn^2[/tex]

Step-by-step explanation:

From the question we are told that:

Ratio of square base and slant height [tex]R=6:5[/tex]

Volume [tex]V=48000cm^3[/tex]

Generally the equation for height  Pyramid h is mathematically given by

  [tex]h^2=s^2+(\frac{1}{2}a^2)[/tex]

  [tex]h=\sqrt{s^2+(\frac{1}{2}a)^2)}[/tex]

  [tex]h=\sqrt{5^2+3^2}[/tex]

  [tex]h=4[/tex]

   Where

    a= base Length

    s=slant height of pyramid

Therefore the ratio of height is

  [tex]h=4[/tex]

Generally the equation for The Volume of  Square  based Pyramid V is mathematically given by

 [tex]V=a^2\frac{h}{3}[/tex]

 [tex]V=6^2\frac{4}{3}[/tex]

 [tex]V=48[/tex]

Therefore the ratio of volume is

 V=48

Generally for V=4800

Therefore

  [tex]a=60[/tex]

  [tex]h=40[/tex]

Generally the equation for Area of Square  based Pyramid A is mathematically given by

  [tex]A=a^2+2a\sqrt{\frac{a^2}{4}+h^2 }[/tex]

 [tex]A=60^2+2(60)\sqrt{\frac{(60)^2}{4}+(40)^2}[/tex]

 [tex]A=9600cn^2[/tex]

Therefore the Area of Square  based Pyramid A is

 [tex]A=9600cn^2[/tex]

ACCESS MORE