Respuesta :
Answer:
Given that we have;
[tex]sin \left (\dfrac{x}{2} \right ) = \sqrt{\dfrac{1 - cos (x)}{2} }[/tex]
By the application of the law of indices and algebraic process of adding a and subtracting a fraction from a whole number, we have;
[tex]\therefore \dfrac{\left ( 1 - sin^2 \left (\dfrac{x}{2} \right ) \right )}{\left ( 1 + sin^2 \left (\dfrac{x}{2} \right ) \right )} =\dfrac{\left ( \dfrac{1 + cos (x)}{2} \right)}{\left (\dfrac{3 - cos (x)}{2} \right ) } =\dfrac{\left ( 1 + cos (x))}{(3 - cos (x))}[/tex]
Step-by-step explanation:
An identity is a valid or true equation for all variable values
The given equation is presented as follows;
[tex]\dfrac{\left ( 1 - sin^2 \left (\dfrac{x}{2} \right ) \right )}{\left ( 1 + sin^2 \left (\dfrac{x}{2} \right ) \right )} =\dfrac{\left ( 1 + cos (x))}{(3 - cos (x))}[/tex]
From trigonometric identities, we have;
[tex]sin \left (\dfrac{x}{2} \right ) = \sqrt{\dfrac{1 - cos (x)}{2} }[/tex]
[tex]\therefore sin^2 \left (\dfrac{x}{2} \right ) = \dfrac{1 - cos (x)}{2}[/tex]
[tex]1 - sin^2 \left (\dfrac{x}{2} \right ) = 1 - \dfrac{1 - cos (x)}{2} = \dfrac{2 - (1 - cos (x))}{2} = \dfrac{1 + cos (x))}{2}[/tex]
[tex]1 + sin^2 \left (\dfrac{x}{2} \right ) = 1 + \dfrac{1 - cos (x)}{2} = \dfrac{2 + 1 - cos (x))}{2} = \dfrac{3 - cos (x))}{2}[/tex]
[tex]\therefore \dfrac{\left ( 1 - sin^2 \left (\dfrac{x}{2} \right ) \right )}{\left ( 1 + sin^2 \left (\dfrac{x}{2} \right ) \right )} =\dfrac{\left ( \dfrac{1 + cos (x)}{2} \right)}{\left (\dfrac{3 - cos (x)}{2} \right ) } =\dfrac{\left ( 1 + cos (x))}{(3 - cos (x))}[/tex]
[tex]\therefore \dfrac{\left ( 1 - sin^2 \left (\dfrac{x}{2} \right ) \right )}{\left ( 1 + sin^2 \left (\dfrac{x}{2} \right ) \right )} =\dfrac{\left ( 1 + cos (x))}{(3 - cos (x))}[/tex]