Respuesta :

Answer:

[tex]y= (x -4)^2 - 1[/tex]

[tex]Vertex = (4,-1)[/tex]

Step-by-step explanation:

Given

[tex]f(x) = x^2 + 6x+13[/tex]

Required

7 units left and 5 units down

First, we have: [7 units left]

The rule is:

[tex](x,y) \to (x-7,y)[/tex]

So, we have:

[tex]f(x) = (x - 7)^2 + 6(x -7)+13[/tex]

Next, we have: [5 units down]

The rule is:

[tex](x,y) \to (x,y-5)[/tex]

So, we have:

[tex]f'(x) = (x - 7)^2 + 6(x -7)+13 - 5[/tex]

[tex]f'(x) = (x - 7)^2 + 6(x -7)+8[/tex]

Rewrite as:

[tex]y = (x - 7)^2 + 6(x -7)+8[/tex]

Expand

[tex]y = x^2 - 14x + 49 + 6x -42+8[/tex]

Collect like terms

[tex]y = x^2 - 14x + 6x -42+8+ 49[/tex]

[tex]y = x^2 -8x +15[/tex]

To write in vertex form, we have

Subtract 15 from both sides

[tex]y -15= x^2 -8x[/tex]

Divide (-8) by 2; Add the square to both sides

[tex]y -15+ (-8/2)^2= x^2 -8x + (-8/2)^2[/tex]

[tex]y -15+ 16= x^2 -8x + 16[/tex]

[tex]y +1= x^2 -8x + 16[/tex]

Expand

[tex]y +1= x^2 -4x - 4x + 16[/tex]

Factorize

[tex]y +1= x(x -4) -4(x - 4)[/tex]

Factor out x - 4

[tex]y +1= (x -4)(x - 4)[/tex]

Rewrite as:

[tex]y +1= (x -4)^2[/tex]

Make y the subject

[tex]y= (x -4)^2 - 1[/tex]

The vertex is:

[tex]Vertex = (4,-1)[/tex]