Respuesta :
Answer:
0.702 /s
Explanation:
Rate constant at [tex][298 \mathrm{~K}, \mathrm{~K}_{1}=3.46 \times 10^{-2} \mathrm{~s}^{-1}[/tex]
Rate constant at [tex]350 \mathrm{~K}, \mathrm{~K}_{2}=?[/tex]
[tex]T_{1}=298 \mathrm{~K}[/tex]
[tex]T_{2}=350 \mathrm{~K}[/tex]
Activation energy, [tex]\mathrm{Ea}=50.2 \times 10^{3} \mathrm{~J} / \mathrm{mol}[/tex]
Use the following equation to calculate [tex]K_{2}$ at $350 \mathrm{~K}[/tex]
Use the following equation to calculate [tex]K_{2}$ at $350 \mathrm{~K}[/tex]
[tex]\ln \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\mathrm{Ea}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right][/tex]
Therefore,
[tex]\ln \left(\frac{K_{2}}{3.46 \times 10^{-2} \mathrm{~s}^{-1}}\right) &=\frac{50.2 \times 10^{3} \mathrm{~J} / \mathrm{mol}}{8.314 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}}\left[\frac{1}{298 \mathrm{~K}}-\frac{1}{350 \mathrm{~K}}\right][/tex]
[tex]\ln \left(\frac{K_{2}}{3.46 \times 10^{-2} \mathrm{~s}^{-1}}\right) &=\frac{50.2 \times 10^{3} \mathrm{~J} / \mathrm{mol}}{8.314 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}}\left[\frac{52 \mathrm{~K}}{298 \mathrm{~K} \times 350 \mathrm{~K}}\right][/tex]
[tex]\frac{K_{2}}{3.46 \times 10^{-2} \mathrm{~s}^{-1}} &=\mathrm{e}^{3.01}[/tex]
[tex]\frac{K_{2}}{3.46 \times 10^{-2} \mathrm{~s}^{-1}} &=20.3[/tex]
[tex]K_{2} &=20.3 \times 3.46 \times 10^{-2} \mathrm{~s}^{-1}[/tex]
[tex]&=0.702 \mathrm{~s}^{-1}[/tex]
hence, the rate constant at [tex]350 \mathrm{~K} [/tex] is 0.702[tex]\mathrm{~s}^{-1}[/tex]