A 2.00 kg piece of aluminum metal at 75.0 °C is placed in 6.00 liters (= 6.00 kg) of water at 35.0 °C. Determine the final temperature .

Respuesta :

Answer:

T = 46.97 °C

Explanation:

Applying the law of conservation of energy, we get:

Heat Energy Lost by Aluminum Piece = Heat Energy Gained by Water

[tex]m_aC_a\Delta T_a=m_wC_w\Delta T_w[/tex]

where,

[tex]m_w[/tex] = mass of water = (Density)(Volume) = (1000 kg/m³)(1 L)(0.001 m³/1 L)

[tex]m_w[/tex] = 1 kg

[tex]m_a[/tex] = mass of auminum piece = 2 kg

[tex]C_w[/tex] = specific heat capacity of water = 4200 J/kg.°C

[tex]C_a[/tex] = specific heat capacity of aluminum = 897 J/kg.°C

[tex]\Delta T_w[/tex] = Change in Temperature of Water = T - 35°C

[tex]\Delta T_a[/tex] = Change in Temperature of Aluminum Piece = 75°C - T

T = Final Temperature = ?

Therefore,

[tex](2\ kg)(897\ J/kg.^oC)(75^oC - T)=(1\ kg)(4200\ J/kg.^oC)(T - 35^oC)\\\\134550\ J - (1794\ J/^oC)T = (4200\ J/^oC)T - 147000\ J\\281550\ J = (5994\ J/^oC)T\\\\T = \frac{281550\ J }{5994\ J/^oC}[/tex]

T = 46.97 °C