Answer:
T = 46.97 °C
Explanation:
Applying the law of conservation of energy, we get:
Heat Energy Lost by Aluminum Piece = Heat Energy Gained by Water
[tex]m_aC_a\Delta T_a=m_wC_w\Delta T_w[/tex]
where,
[tex]m_w[/tex] = mass of water = (Density)(Volume) = (1000 kg/m³)(1 L)(0.001 m³/1 L)
[tex]m_w[/tex] = 1 kg
[tex]m_a[/tex] = mass of auminum piece = 2 kg
[tex]C_w[/tex] = specific heat capacity of water = 4200 J/kg.°C
[tex]C_a[/tex] = specific heat capacity of aluminum = 897 J/kg.°C
[tex]\Delta T_w[/tex] = Change in Temperature of Water = T - 35°C
[tex]\Delta T_a[/tex] = Change in Temperature of Aluminum Piece = 75°C - T
T = Final Temperature = ?
Therefore,
[tex](2\ kg)(897\ J/kg.^oC)(75^oC - T)=(1\ kg)(4200\ J/kg.^oC)(T - 35^oC)\\\\134550\ J - (1794\ J/^oC)T = (4200\ J/^oC)T - 147000\ J\\281550\ J = (5994\ J/^oC)T\\\\T = \frac{281550\ J }{5994\ J/^oC}[/tex]
T = 46.97 °C