The length of a rectangle flower bed is 5ft longer than its width. A sidewalk with a width of 3ft surrounds the bed. If the total area of the bed and sidewalk is 546ft^2, what are the dimensions of the flower bed ?

Respuesta :

Answer:

[tex]W=15ft[/tex]

[tex]L=20ft[/tex]

Step-by-step explanation:

From the question we are told that:

Length of Bed [tex]L=5+W[/tex]

Width of sidewalk [tex]W_s=3ft[/tex]

Area of the bed and sidewalk [tex]A_t= 546ft^2[/tex]

Generally the equation for Area of the bed and sidewalk[tex]A_t[/tex] is mathematically given by

 [tex]Area=L*B[/tex]

 [tex]A_t=((3+3)+L)*((3+3)+W)[/tex]

Therefore

 [tex]546=((3+3)+(5+W))*((3+3)+W)[/tex]

 [tex]0=((6+(5+W))*((6)+W)-546[/tex]

 [tex](11+W)*(6+W)-546=0[/tex]

 [tex]W^2+17B-480=0[/tex]

Solving the Quadratic Equation

 [tex]W=15ft[/tex] (Using only positive root)

Generally the Length L is mathematically given by

 [tex]L=5+15[/tex]

 [tex]L=20ft[/tex]

ACCESS MORE