For a given geometric sequence, the 9th term, a9, is equal to 43/256 and the 14th term, a14, is equal to 172. Find the value of the 18 term

Respuesta :

Answer:

[tex]18th=44032[/tex]

Step-by-step explanation:

From the question we are told that:

9th term [tex]a9=\frac{43}{256}[/tex]

14th term [tex]a14=172[/tex]

Generally the equation for Geometric sequence is mathematically given by

 [tex]a_n=a_1r^{n-1}[/tex]

For 9th term

 [tex]\frac{43}{256}=a_1r^{8}[/tex]

For 14th term

 [tex]172=a_1r^{13} \\a_1=\frac{172}{r^13}[/tex]

Substitute in 9th term

 [tex]\frac{43}{256}=\frac{172}{r^13}*r^{8}[/tex]

 [tex]\frac{43}{256*172}=r^{-5}[/tex]

 [tex]r=^5sqrt{\frac{44032}{43}}[/tex]

 [tex]r=4[/tex]

Therefore First term a is given as

 [tex]a_1=\frac{172}{4^13}[/tex]

 [tex]a_1=2.563*10^{-6}[/tex]

Generally the equation for the 18th term is mathematically given by

 [tex]18th=a_1r^{17}[/tex]

 [tex]18th=2.563*10^{-6}*4^{17}[/tex]

 [tex]18th=44032[/tex]

ACCESS MORE