Answer:
[tex](a)\ Area = 195\pi[/tex]
[tex](b)\ Volume = 700\pi[/tex]
Step-by-step explanation:
Given
[tex]h = 12[/tex]
[tex]d_1 = 10[/tex] --- lower diameter
[tex]d_2 = 20[/tex] --- upper diameter
Solving (a): The curved surface area
This is calculated as:
[tex]Area = \pi l(r_1 + r_2)[/tex]
Where
[tex]r_1 = 0.5 * d_1 = 0.5 * 10 = 5[/tex] --- lower radius
[tex]r_2 = 0.5 * d_2 = 0.5 * 20 = 10[/tex] --- upper radius
And
[tex]l = \sqrt{h^2 + (r_1 - r_2)^2[/tex] ---- l represents the slant height of the frustrum
[tex]l = \sqrt{12^2 + (5 - 10)^2[/tex]
[tex]l = \sqrt{12^2 + (-5)^2[/tex]
[tex]l = \sqrt{144 + 25[/tex]
[tex]l = \sqrt{169[/tex]
[tex]l = 13[/tex]
So, we have:
[tex]Area = \pi l(r_1 + r_2)[/tex]
[tex]Area = \pi * 13(5 + 10)[/tex]
[tex]Area = \pi * 13(15)[/tex]
[tex]Area = 195\pi[/tex]
Solving (b): The volume
This is calculated as:
[tex]Volume = \frac{1}{3}\pi * h * (r_1^2 + r_2^2 + (r_1 * r_2))[/tex]
This gives:
[tex]Volume = \frac{1}{3}\pi * 12 * (5^2 + 10^2 + (5 * 10))[/tex]
[tex]Volume = \frac{1}{3}\pi * 12 * (25 + 100 + (50))[/tex]
[tex]Volume = \frac{1}{3}\pi * 12 * (175)[/tex]
[tex]Volume = \pi *4 * 175[/tex]
[tex]Volume = 700\pi[/tex]