Answer:
[tex]G = (-1.5,1.5)[/tex]
Step-by-step explanation:
Given
[tex]M = (-7,5)[/tex]
[tex]A = (6,5)[/tex]
[tex]T = (4,-2)[/tex]
[tex]H = (-9,-2)[/tex]
Required
Determine the coordinate of G
From the complete question, G is at the intersection of MT and AH.
So, G is calculated using midpoint formula
[tex]G = \frac{1}{2}(x_1 + x_2, y_1 + y_2)[/tex]
For MT:
[tex]M = (-7,5)[/tex] [tex]T = (4,-2)[/tex]
[tex]G = \frac{1}{2}(-7 + 4, 5 -2)[/tex]
[tex]G = \frac{1}{2}(-3, 3)[/tex]
Open bracket
[tex]G = (-1.5,1.5)[/tex]
To show that [tex]G = (-1.5,1.5)[/tex]
We have:
[tex]A = (6,5)[/tex] [tex]H = (-9,-2)[/tex]
[tex]G = \frac{1}{2}(x_1 + x_2, y_1 + y_2)[/tex]
[tex]G =\frac{1}{2}(6-9,5-2)[/tex]
[tex]G = \frac{1}{2}(-3, 3)[/tex]
Open bracket
[tex]G = (-1.5,1.5)[/tex]
Hence, the coordinates of G is:
[tex]G = (-1.5,1.5)[/tex]