The coordinates of the vertices of parallelogram MATH are M(-7,5), A(6,5), T(4,-2), and H(-9,-2). What are the coordinate of G, the point of intersection of diagonals MT and ?

Respuesta :

Answer:

[tex]G = (-1.5,1.5)[/tex]

Step-by-step explanation:

Given

[tex]M = (-7,5)[/tex]

[tex]A = (6,5)[/tex]

[tex]T = (4,-2)[/tex]

[tex]H = (-9,-2)[/tex]

Required

Determine the coordinate of G

From the complete question, G is at the intersection of MT and AH.

So, G is calculated using midpoint formula

[tex]G = \frac{1}{2}(x_1 + x_2, y_1 + y_2)[/tex]

For MT:

[tex]M = (-7,5)[/tex]      [tex]T = (4,-2)[/tex]

[tex]G = \frac{1}{2}(-7 + 4, 5 -2)[/tex]

[tex]G = \frac{1}{2}(-3, 3)[/tex]

Open bracket

[tex]G = (-1.5,1.5)[/tex]

To show that [tex]G = (-1.5,1.5)[/tex]

We have:

[tex]A = (6,5)[/tex]       [tex]H = (-9,-2)[/tex]

[tex]G = \frac{1}{2}(x_1 + x_2, y_1 + y_2)[/tex]

[tex]G =\frac{1}{2}(6-9,5-2)[/tex]

[tex]G = \frac{1}{2}(-3, 3)[/tex]

Open bracket

[tex]G = (-1.5,1.5)[/tex]

Hence, the coordinates of G is:

[tex]G = (-1.5,1.5)[/tex]

ACCESS MORE