Respuesta :

Given:

The function is:

[tex]f(x)=x^3-4x^2-37x+40[/tex]

[tex]f(8)=0[/tex]

To find:

The all of the zeros of f(x) algebraically.

Solution:

We have, [tex]f(8)=0[/tex] is means 8 is a zero of given function and (x-8) is a factor of given function.

The function is:

[tex]f(x)=x^3-4x^2-37x+40[/tex]

Spittle the middle terms in such a way so that we get (x-8) as a common factor.

[tex]f(x)=x^3-8x^2+4x^2-32x-5x+40[/tex]

[tex]f(x)=x^2(x-8)+4x(x-8)-5(x-8)[/tex]

[tex]f(x)=(x^2+4x-5)(x-8)[/tex]

Spittle the middle term of the quadratic expression, we get

[tex]f(x)=(x^2+5x-x-5)(x-8)[/tex]

[tex]f(x)=(x(x+5)-1(x+5))(x-8)[/tex]

[tex]f(x)=(x+5)(x-1)(x-8)[/tex]

For zeros, [tex]f(x)=0[/tex].

[tex](x+5)(x-1)(x-8)=0[/tex]

[tex](x+5)=0\text{ and }(x-1)=0\text{ and }(x-8)=0[/tex]

[tex]x=-5\text{ and }x=1\text{ and }x=8[/tex]

Therefore, the all zeros of the given function are -5, 1 and 8.

ACCESS MORE