Given:
The function is:
[tex]f(x)=x^3-4x^2-37x+40[/tex]
[tex]f(8)=0[/tex]
To find:
The all of the zeros of f(x) algebraically.
Solution:
We have, [tex]f(8)=0[/tex] is means 8 is a zero of given function and (x-8) is a factor of given function.
The function is:
[tex]f(x)=x^3-4x^2-37x+40[/tex]
Spittle the middle terms in such a way so that we get (x-8) as a common factor.
[tex]f(x)=x^3-8x^2+4x^2-32x-5x+40[/tex]
[tex]f(x)=x^2(x-8)+4x(x-8)-5(x-8)[/tex]
[tex]f(x)=(x^2+4x-5)(x-8)[/tex]
Spittle the middle term of the quadratic expression, we get
[tex]f(x)=(x^2+5x-x-5)(x-8)[/tex]
[tex]f(x)=(x(x+5)-1(x+5))(x-8)[/tex]
[tex]f(x)=(x+5)(x-1)(x-8)[/tex]
For zeros, [tex]f(x)=0[/tex].
[tex](x+5)(x-1)(x-8)=0[/tex]
[tex](x+5)=0\text{ and }(x-1)=0\text{ and }(x-8)=0[/tex]
[tex]x=-5\text{ and }x=1\text{ and }x=8[/tex]
Therefore, the all zeros of the given function are -5, 1 and 8.